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Abstract. We have studied the mechanism of stimulated electromagnetic shock radiation 
( S E S R )  caused by the interaction between a relativistic charged particle (electron) and an 
externally applied electromagnetic plane wave in a dielectric under superphase conditions. 
We have introduced a relativistic generalisation and considered the time-dependent position 
o f  the electron in the field of the incident electromagnetic wave. We have performed 
classical relativistically invariant calculations for electromagnetic fields of Cherenkov 
radiation (CR)  and SESR in the linear approximation using the method of Fourier trans- 
forms. The expressions derived are more general and are consistent with earlier results in 
special situations. In the linear approximation, the SESR term gets modified and an 
additional longitudinal SESR term is obtained. There is no change in the transverse SESR 

term. 

1. Introduction 

There has been considerable interest in recent years in the study of stimulated radiation 
resulting from the interaction of relativistic electron beams with coherent electromag- 
netic fields in polarisable media. In a series of interesting papers [l-51 Schneider and 
Spitzer have proposed and discussed the basic characteristics of the mechanism of 
SESR. It is produced by the interaction, in a polarisable medium and under supercritical 
conditions, of relativistic electrons with counterflowing coherent electromagnetic waves. 
It involves a synergism between two known phenomena, the Doppler shift in Compton 
backscattering from relativistic electrons in a vacuum and the formation of a shock 
by a material body moving in a medium at a speed greater than that of the waves it 
produces in the medium. It results in the generation of intense radiation in the form 
of a shock front, with frequencies shifted markedly from that of the incident wave. 
Schneider and Spitzer [5] claim that with SESR it may be possible to generate a more 
efficient continuously tunable source of very high frequency (beyond the uv and into 
the x-ray regime) coherent radiation having a very high degree of monochromaticity. 
Using different methods S o h  [6] and Zachery [7,8] have also studied SESR. However, 
experimental verification of the SESR effect has not yet been reported. Even then the 
process needs to be studied with more exact calculations, because of its possible use 
for generating coherent upshifted electromagnetic radiation in the frequency region 
not covered by existing sources. 

2. General outline 

In this paper, using the method of Fourier transforms, we have obtained leading-order 
solutions (linear response of the electron to the incident wave) of Maxwell’s equations 
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which specify the electromagnetic fields that generate C R  and SESR in the simplest 
configuration, namely that of a plane monochromatic wave (of amplitudes Eo,  Eo and 
frequency wo)  colliding head on with an electron with velocity U (parallel to the 2 
axis) travelling under supercritical conditions (U > c /  n, n = ( ~ p ) ’ / ’  = refractive index) 
in a non-magnetic homogeneous isotropic dispersionless dielectric medium of infinite 
extent. We have used standard notation and Gaussian units throughout this paper. 

Following Schneider and Spitzer [5], using Fourier transforms of all quantities, 
namely I?, B, 7 and p appearing in Maxwell’s equations, their general solutions can 
be written as 

These expressions are general insofar as external sources (i and p )  are concerned, i.e. 
they hold for an arbitrary distribution of electrons in the incident beam. 

In the situation under consideration we can write the charge and current density as 

where e is the electronic charge, U( t )  = d E / d r  and E (  t )  is the position of the incident 
electron in the field of the incident electromagnetic wave. 

The Lorentz force on the incident electron due to the incident electromagnetic 
wave is 

U1 

where mo is the electron rest mass, y = (1 - V’/ c ~ ) - ‘ ’ ~ ,  

E, = Eo sin(wot - KO . E )  

B, = Bo sin(wot - KO E )  
and 

are, respectively, the electric and magnetic fields of the incident wave at the electron’s 
position: 

Bi = nRoxEi Eo= - ( w , n / c ) L  

We neglect magnetic field effects and the electron’s energy changes, but include 
everywhere the electron’s position changes (which was not done earlier in [ 5 ] )  due to 
the incident electromagnetic wave. For the electron’s velocity and position in the 
presence of a counterflowing electromagnetic wave we obtain the following equations 
(see appendix 1) which remain valid even when the electron’s motion is relativistic [9, 
equation ( 7 ) l t  

V ( t )  = (0, + ( u , / y 2 )  cos at, U )  ( 5 )  

t In (A8) of [ 5 ] ,  addition of two velocities is non-relativistic and at the same time the factor, namely 
[ 1 - I /  E P ’ ) ,  has been taken out of the integral that appeared in (A19.9) because the authors have approximated 
the factor, namely u K , / w ,  by one which is valid only for ultrarelativistic particles. We have removed this 
discrepancy here. 
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where 

Substituting equations ( 5 )  and ( 6 )  in ( 3 a )  and (3b) ,  evaluating Fourier transforms of 
charge and  current densities using properties of 6 functions and the relation for the 
Bessel function, namely 

t X  

exp(*ia sin e) = C J , ( a )  exp(*ila) 
/ = -  ?- 

where I is an  integer, we obtain the Fourier transform of charge density as 
+X 

p ( K ,  w )  = - 2 ~ e  1 6(w  - K,u - l n ) J l ( K v y o )  
I=-x 

and the Fourier transform of current density as 

J ( K ,  w )  = -2rreui S(w - K,u - lfl)J,(K,y,) 
+X 

I = - r  

( 7 )  

+5 

-y^e.irClyo J,(K, .yo){S[w - K,u - ( l +  1)R]+  S [ w  - Kzu - ( I -  l)n]} 
I = - X  

= 2 j L ( K , u ) + y ^ j T ( K , w )  (8) 

where yo = v u /  y’fl, and the suffices L and T respectively denote the ‘longitudinal’ and  
‘transverse’ components with respect to the electron’s velocity direction. 

Hence we can derive the desired electromagnetic fields by substituting the source 
densities given by the above equations in equations (1) and ( 2 )  and evaluating the 
multiple integrals appearing therein under supercritical conditions and  retaining only 
terms linear in U,. These fields may further be used to calculate the energy radiated 
through C R  and  SESR. 

3. Calculations 

Here we present calculations for the electric field. Substituting equations ( 7 )  and (8) 
in equation ( I ) ,  we obtain 

where 

2ep a 
( 2 ~ )  c a t  

E , ( X ,  t )  =z --IL(Cl) 

where 

ZL(n) = d3K dw exp[i(wt - I?. X)]J/( &yo) 
I = - X  



2746 A A Risbud 

and 

where 

I,(n) = 1 d’K dw exp[i(wt - I? 9 x)]J,( K,yo) 
/=-in 

The evaluation of the integrals in equations ( l o b )  and ( 1  1 b )  is rather complicated. 
We give the major steps and omit the details of the calculations. 

> 1 throughout. We also note that because 
of the electron’s motion under supercritical condition the region of integration is 
restricted to inside the C R  cone. Introducing cylindrical coordinates, namely 
E ( & ,  4, K,) and x ( p ,  4’,  z), equation ( l o b )  takes the following form: 

Z L ( 0 )  = [= dK, K,  dK, d+  

We assume p = 1,  E = constant and 

/=-in 0 

exp(iwt)S(w - K,u -IO) 1 uK, 
x -m dw K ~ + K ~ - E w 2 / c ’  (l-p’w) 
xexp[-iK,z-iK,p cos(4-4’)]JI(KpyOsin 4 ) .  (12) 

The integral WRT w appearing in the above equation is calculated using properties of 
the 6 function and the integral WRT 4 is calculated using the following identities [lo]: 

m sin(wt + 4 ) +  n cos(ot + 4 )  = ( m 2 +  n’)”’ sin(wt + 4 + a )  
m s in(wt+d)-n  c o s ( w t + 4 ) ~ ( m 2 + n 2 ) ” 2 s i n ( w t + 4 - a )  

where a =tan-’( nl m )  and the integral [ 1 1 1  

1:’ J,( vz sin t )  cos( vx cos t )  d t  

) 
(x’ + z2)1’2 + ”) ( (x2 + z2)1/2 - x lr 

2 J,/2 v =-J& 2 2 

R e p > - 1  R e z > 0 .  

Putting +’= 0, for simplicity, we obtain for the 4 integral (see appendix 2) 

d4  exp[-iK,p c o d 4  - 4’)1J,(yoK, sin 4 )  

where 

F=’[( 2 +  2 112-  E = i [ p  + ( y :  + P ’ ) ~ / ~ ]  2 Yo P ) PI 
1 = +2, +4, +6, . . . . 
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In this way, after evaluating the integrals WRT w and 
form: 

equation (12) takes the following 

K ,  dK, exp(iuTK,) +ot dK, exp(it.uK,) +cc 

z l ( K z )  = a K f  + bK,  + d z2(Kz)=[-m ( K , u - I R ) ( a K i + b K Z + d )  

a = 1 - &p2 < o b = 2&1Ru/c2 d = K’, - E12R2/C2 r = t - z / u > O .  

Next we evaluate the integral WRT K ,  by contour integration [12] and obtain 

where 

KI = - A  - ys(  K i  + B ) ’ l 2  K2 = - A  + ys( K’, + B ) ” 2  K3= -lR/u 

A = ElRuyf/c2 B = &12R2 y:/ c2  uf = ysu7 

ys = ( E p 2 -  1 ) - 1 ’ 2 =  

Lastly, to evaluate the integral WRT K,, we make use of the following relation for Bessel 
functions [ 131: 

x J,+,{Z[2 cos 8 ( R 2  e” + y 2  (17)  

where Re(p + Y )  > - 1  and R, y are real and positive. Using (17) we notice that the 
second term in G( K , ) ,  namely J I l 2 (  EK,)J,,,( FK,,) can be omitted, because 

JIl ( EK,, ) JI ,  ( FK, ) a E ‘I F ”* I = +2, +4, 

and E - p ,  F - 0  when first-order terms in U, are kept. Therefore, in the linear 
approximation only I = 0 terms will contribute to the final result. 

Further, we make use of the following relations [14]: 

sin(xy)J,( ax)J,( bx )  dx = 0 

1 

if 0 < y < b - a  

if b - a  < y  < b + a  -- 2(ab)1/2 f l ’ -1 /2(A)  
- 
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where A = ( b2+  a’ - y’)/2ab, P, and Q, 
kind, respectively, 

are Legendre functions of the first and second 

where I ,  and K ,  are modified Bessel functions of the first and second kind, respectively, 
and 

~ o ~ J o [ b ( x ’ - a 2 ) 1 / 2 ]  sin(xy) d x = O  if O<x  < a, O <  y < b, b > 0 

= (y2-b2)-l/’  co~“(y2-b2)’’*] if a < x < c o ,  b < y < c o ,  b > 0 .  
(20) 

To complete all integrations the additional integral WRT 0, which enters into the 
expression because of the use of equation (17), can be worked out using contour 
integration to give 

where 

AB = [2 cos 0 ( E 2  e i e +  F 2  e-io)]1’2- ( 2  cos 0 eiBp2)”’ 

q = (u’2 - p y *  > 0. 

Thus using equations (15)-(21) for evaluating integrals WRT K ,  that appeared in 
equation (14), we obtain 

4T2YS 2q2 4x2 ys c o s ( J B  q )  

P-‘;’( 1 - 3 )  E P  4 
zL(n) = - 

Yo 

where q > 0, .r> 0 ( q  = 0 on the shock front, i.e. C R  cone). 
Simplifying the first term in (22) using the following properties of special functions 

2 
[ 1 3 , 1 5 1  

P, ( -Z )  =exp(*vxi)P,(Z)--sin v .nQY(Z)  

( + m i  with Z < 0, - m i  with Z > 0) 

x 

Q - l l r ( Z ) =  (1 )1 ’2K[  z + 1  (”)’*I z+1 

where K ( Z )  denotes the elliptic integral, and 
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and taking B - 0  and substituting equation (22) in equation ( l o a )  we obtain the 
longitudinal component of the electric field as 

where q > 0, r > 0. 
Proceeding on similar lines (as described above to integrate IL(n)) we have 

calculated the multiple integrals that appear in equation (1 16)  and  obtained, after 
some simplification, 

where 

K = n ( y f + l ) / u  n, = y:n q > o , r > o .  V G  PYr cy=- 
C 

Substituting equation (24) in equation ( 1  l a )  we obtain the transverse component of 
the electric field 

where q>O, r>O. 
Thus using equations (23) and (25) in (9) we finally obtain 

where q>O, r>O. 

4. Analysis 

We note that, for evaluating the time derivative, we have to insert explicitly the physical 
conditions, namely there is no  field ahead of the particle ( r  > 0), and  the fields are 
confined to the region inside the C R  cone ( q  > 0) in expression (26) with the help of 
the step function, namely 

6(x) = 0 if x<O 

= 1  if x > 0. 

Here we are not going into the calculations for radiated power, so we d o  not express 
our result in the above way. 

The first term of our result specified by equation (26) is identified as the C R  term, 
because it matches with the expression for the longitudinal electric field derived by 
Tamm [16]. The remaining two terms in (26) are due  to the presence of the external 
electromagnetic wave. In the absence of the wave the first term remains, while the last 
two terms drop  out. These two terms are due to the mechanism of SESR. The second 
term is identified as the longitudinal SESR field and the third term as the transverse 
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SESR field. Obtaining the SESR contribution in two parts, namely longitudinal and 
transverse, is consistent with the conclusions drawn by Zachery [7]. The transverse 
SESR term matches with the result (equation (A28b)) derived in [ 5 ] ,  except for a factor 
of y - ’  that comes into our expression because we have applied a relativistic correction. 
The longitudinal SESR term is additional here. It comes because we have explicitly 
taken in the calculations the electron’s position changes due to the incident electromag- 
netic wave (instead of the mean position as is done in [ 5 ] ) .  For the low frequency of 
the incident electromagnetic wave (up to microwaves), both the longitudinal and 
transverse parts of SESR are comparable, and for higher frequencies transverse SESR 

dominates over the longitudinal; but in no case is transverse SESR negligible as 
concluded in [7]. 

Appendix 1 

Neglecting the magnetic field term in equation (4), we obtain the equation of motion 
of the electron as 

( A l . l )  

To solve the above equation, we go to the Lorentz frame that moves with the velocity 
ii (parallel to 2) with respect to the laboratory frame. In that frame we have denoted 
the electron’s velocity by V’, time by t ’ ,  frequency by ah, and electric and magnetic 
field strengths, respectively, by l?A and BA and so on. Then ( A l . l )  takes the following 
form: 

ym,dV/dt = -el?,sin(w,t -E,. R ) .  

(A1.2) 

Here, even though B h - p y E h  since U‘<< c, we can neglect the second term on the 
right-hand side of (A1.2) as compared to the first one. Integrating (A1.2), we obtain 

Now, going back to the laboratory frame, we obtain 

V ( t )  = (0, V ’ ( t ) / Y ,  U )  

(A1.3) 

(A1.4) 

where 

Substituting KO = -(won/c)2, writing f2 = wo(l + pn), uf = R2, U, = e E , / m , n  and 
p = 1 V/cl- lii/cl, we obtain the electron’s velocity as 

V ( t )  = (0, ( ? J u l y 2 )  cos nt, U). (A1.5) 
Integrating (A1.5) WRT f we obtain the electron’s position as 

R (  t )  = (0, (U,,/ Y’R) sin Or, u t ) .  (Al.6) 
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Appendix 2 

Let us denote the integral with respect to 4 by Z, 

exp[iK,p c o d 4  - $’)]J,(K,yo sin 4 )  d 4  = Z,. (A2.1) 

Expanding cos(4 - 4 ‘ )  and splitting the interval of I , ,  namely 0 to 27r, into two parts, 
namely 0 to 7r and 7r to 27r, we obtain 

x{exp[i(a cos 4+6 sin 4)]+exp[-i(a cos 4 + b  sin 4 ) ] }  

{exp[i(a cos 4 + b sin 4)] +( ‘“””+1)  
3 - exp[ -i( a cos 4 + 6 sin 4)]} (A2.2) 

where a = K,p cos +‘, b = K,p sin 4‘. 

simplifications, we obtain 
Reducing the interval of the integral in (A2.2) further to 0 to ~ / 2  with some 

+JI(K,y,  cos 4 )  cos(-a sin #I + 6 cos 4 ) ]  

l + ( - - l ) / + I  
+ i (  

) [ J / ( K p y o  sin 4 )  sin(a cos 4 + 6 sin 4 )  

+ J ~ ( K P y , c o s 4 ) s i n ( - a s i n 4 + b c o s ~ ) ]  . (A2.3) 

Using a cos 4 + 6 sin 4 = K,p cos( 4 - 4 ’ )  and -a  sin 4 + b cos 4 = - K,p sin( 4 - 4 ‘ )  
in (A2.3) and simplifying, we obtain 

Z + = 4 [ ~ 2 d 4 J o ( K , y o s i n  4)cos[K,p c o s ( 4 - 4 ’ ) ]  

I 

+ 8  ~ ~ 2 d 4 J , ( K p y o s i n  4 )  cos[K,p cos(4-4’ ) ]  (A2.4) 

where 1 = +2, +4,.  . , . 
Putting 4 ’=  0, and using the standard integral given earlier, we obtain 

L = 2 r J o (  EK, )Jo(  FK, ) + 4 rJ/, 2 ( EK, 2 ( FK, ) (A2.5) 

where 

E = ~ [ ( y ~ + p 2 ) ” 2 + p ]  F = f [ ( y i +  p y  - p]. 
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